взлом

Открытая медицинская библиотека

Статьи и лекции по медицине ✚ Библиотека студента-медика ✚ Болезни и способы их лечения.

Кардиология Решение
просмотров - 282

1. Рассчитаем . Так как катушка длинная, приближенно можно считать, что магнитное поле внутри катушки однородно, а векторы напряженности и индукции направлены вдоль оси катушки и имеют значения

,

.

Эти выражения вытекают из закона полного тока в предположении, что выполняется условие: .

Тогда

,

где – магнитный поток, с которым, будем считать, сцепляются всœе витки катушки (такое допущение является приближенным). Расчет по этой приближенной формуле дает несколько завышенное значение индуктивности. Более точный расчет и в центре соленоида (точка А на рис. 13.13) дает формула [3]

,

которая при и имеет вид

.

Последняя формула была использована выше.

2. Рассчитаем . Для приближенного расчета цилиндрический сердечник заменим эллипсоидом вращения (показан пунктиром на рис. 158), длинная полуось его равна , которая равна . Известно, что эллипсоид вращения в однородном магнитном поле намагничивается однородно, ᴛ.ᴇ. результирующее магнитное поле внутри него имеет одно и то же значение индукции, ĸᴏᴛᴏᴩᴏᴇ пропорционально внешнему полю (в данном случае полю ). Тогда, используя теорему о потоке [5], можно записать

.

Важно заметить, что для случая эллипсоида вращения ( ) в однородном поле [5]

,

где N – коэффициент размагничивания, – относительная магнитная проницаемость сердечника ( ).

Коэффициент N рассчитывается по формуле [6]

, (13.18)

где .

Следовательно,

.

Таким образом,

. (13.19)

Пусть мм, мм, , мм, мм. Для данного соотношения из (13.18) получаем . Расчет по формуле (13.19) дает следующий результат:

Гн.

Как видно из результатов расчета͵ введение сердечника в катушку увеличивает ее индуктивность почти в шесть раз.


Читайте также


  • - Решение

    Постоянные составляющие токов А, . Для первых гармоник эквивалентное комплексное сопротивление второй и третьей ветвей (резонанс токов), а комплексное сопротивление четвертой ветви (резонанс напряжений). Поэтому амплитуды токов в первой и четвертой ветвях ... [Ознакомиться подробнее.]


  • - Решение

    Разложение кривой в ряд Фурье: . Мгновенное значение напряжение на зажимах вольтметра . (6.10) В выражении 6.10 сумма ЭДС всех гармоник, не кратных 3, обращается в нуль, а третья, девятая и т.д. гармоники суммируются, и напряжение на зажимах вольтметра равно... [Ознакомиться подробнее.]


  • - Решение

    А, А, А, А, В. Показания приборов магнитоэлектрической системы: B, A. Показания приборов электромагнитной системы: B, A. Задача 6.8 На вход цепи (рис. 6.8) подано напряжение . Параметры цепи: Ом, R=100 Ом. Определить действующие значения токов , , , .... [Ознакомиться подробнее.]


  • - Решение

    Действующее значение тока первой гармоники А. Действующее значение тока третьей гармоники А. Действующее значение тока А. Задача 6.7 В схеме (рис. 6.7): , Ом. Определить показания приборов: а) электромагнитной системы б) магнитоэлектрической... [Ознакомиться подробнее.]


  • - Решение

    Кривая симметрична относительно оси ординат, в разложении отсутствуют синусные составляющие: , где ; . Учитывая, что период повторяемости кривой равен , и заменяя переменную на , получаем: ; При . При . Для – нечётных , , соответственно ... [Ознакомиться подробнее.]


  • - Решение

    Кривая симметрична относительно начала координат и относительно оси абсцисс, в разложении отсутствуют постоянная составляющая, косинусные и чётные гармоники: . Амплитуды гармоник . Таким образом, . Задача 6.3 Найти разложение напряжения в ряд... [Ознакомиться подробнее.]


  • - Решение

    Кривая обладает двумя видами симметрии – относительно начала координат и относительно оси абсцисс. Соответственно в разложении отсутствуют постоянная составляющая, косинусные и чётные гармоники: . Амплитуды синусных составляющих . (6.8) Кривая где . Тогда... [Ознакомиться подробнее.]


  • - Решение

    Несмотря на то, что при работе трансформаторов в масле создается переменное электромагнитное поле, при частоте Гц эту задачу можно решать как для электростатического поля. Начало сферических координат поместим в центре шара. Так как капля воды представляет собой... [Ознакомиться подробнее.]


  • - Решение

    1. Сила тока нагрузки определяется интенсивностью распада изотопа, то есть , где Кл – заряд электрона. Следовательно, 2. По мере поступления элементов на нижнюю обкладку конденсатора повышается разность потенциалов между обкладками и увеличивается... [Ознакомиться подробнее.]


  • - Решение

    Определим напряженность электрического поля E и величину ёмкости C. 1. При отсутствии пластины. Известно, что напряжение между двумя точками в электрическом поле . В плоском конденсаторе напряженность электрического поля E в пределах одного диэлектрика постоянна,... [Ознакомиться подробнее.]